

 XLISP 2.0 OBJECTS PRIMER

 by

 Tim I Mikkelsen

 February 3, 1990

Copyright (c) 1990 by Tim I. Mikkelsen. All Rights Reserved.

No part of this document may be copied, reproduced or translated

for commercial use without prior written consent of the author.

Permission is granted for non-commercial use as long as this

notice is left intact.

__

One of the features in the design of XLISP is object-oriented

programming. This primer is intended to serve as a very brief

introduction to the object facilities of the XLISP 2.0 dialect

of LISP. Note that the object features of XLISP are not based

on other existing object definitions in other LISP dialects. If

you find problems in the primer, I'd appreciate hearing.

Tim Mikkelsen

4316 Picadilly Drive

Fort Collins, Colorado 80526

PROGRAMMING STYLES

__

There are many programming paradigms (models). Some of the paradigms

are procedural, functional, rule-based, declarative and object-oriented.

A language can have aspects of one or many of these programming models.

Procedure-Oriented

The programming paradigm most people are familiar with is the procedural

style. The primitives in procedural programming are: subroutines and

data structures. Through these primitives, programmers have some

limited abilities to share programs and program fragments. C and Pascal

are examples of procedural languages. Some procedural languages (such

as Modula and ADA) have extensions that provide for better sharing of

code.

Object-Oriented Programming

Object-oriented programming is based on the primitives of objects,

classes and messages. Objects are defined in terms of classes. Actions

occur by sending a message to an object. An object's definition can be

inherited from more general classes. Objective-C and C++ both are

object-oriented dialects of the C language. Many dialects of LISP have

some object oriented extension (Flavors, Common LOOPS, CLOS and others).

There currently is standards work proceeding to add object-oriented

programming to Common LISP.

Object Oriented Programming

So, the object-oriented programming model is based around the concepts

of objects, classes and messages. An object is essentially a black box

that contains internal state information. You send an object a message

which causes the object to perform some operation. Objects are defined

and described through classes.

One aspect of an object is that you do not have to know what is inside -

or how it works - to be able to use it. From a programming point of

view, this is very handy. You can develop a series of objects for

someone to use. If you need to change what goes on inside, the users of

the objects should be unaware.

Another aspect of objects is that of inheritance. You can build up new

classes from existing classes by inheriting the existing class's

functionality and then extending the new definition. For example, you

can define a tool class (with various attributes) and then go about

creating object instances tool-1, tool-2, and so on. You can also

create new sub-classes of the tool class like power-tool. This is also

very handy because you don't have to re-implement something if you can

build it up from existing code.
XLISP OBJECT-ORIENTED PROGRAMMING

__

XLISP OBJECT TERMINOLOGY

There are, as previously mentioned, many different languages with

object-oriented extensions and facilities. The terminology, operations

and styles of these are very different. Some of the main definitions

for XLISP's object-oriented extensions are:

Object data type The OBJECT DATA TYPE is a built-in data

type of XLISP. Members of the object

data type are object instances and

classes.

Object instances An OBJECT INSTANCE is a composite

structure that contains internal state

information, methods (the code which

respond to messages), a pointer to the

object instance's defining class and a

pointer to the object's super-class.

XLISP contains no built-in object

instances.

Class objects A CLASS OBJECT is, essentially, the

template for defining the derived object

instances. A class object, although

used differently from a simple object

instance, is structurally a member of

the object data type. It is also

contains the linking mechanism that

allows you to build class hierarchies

(sub-classes and super-classes). XLISP

contains two built-in class objects:

OBJECT and CLASS.

Message selector The MESSAGE SELECTOR is the symbol that

is used to select a particular action

(Method) from the object.

Message The MESSAGE is the combination of the

message selector and the data (if any)

to be sent to the object.

Method The METHOD is the actual code that gets

executed when the object receives the

Message.

SENDING MESSAGES

The mechanism for sending messages to XLISP objects is via the SEND

function. It takes an object, a message selector and various optional

arguments (depending on the message selector).

The way that a user creates a new object is to send a :NEW message to a

previously defined class. The result of this SEND will return an

object, so this is normally preceded by a SETQ. The values shown in the

examples that follow may not match what you see if you try this on your

version of XLISP - this is not an error. The screens that are used in

the various examples are similar to what you should see on your computer

screen. The ">" is the normal XLISP prompt (the characters that follow

the prompt is what you should type in to try these examples).

 __

|

|
> (setq my-object (send object :new))

|
#<Object: #2e100>

|__

The object created here is of limited value. Most often, you create a

class object and then you create instances of that class. So in the

following example, a class called MY-CLASS is created that inherits its

definition from the a built-in CLASS definition. Then two instances are

created of the new class.

 __

|

|
> (setq my-class (send class :new '()))

|
#<Object: #27756>

|

|
> (setq my-instance (send my-class :new))

|
#<Object: #27652>

|

|
> (setq another-instance (send my-class :new))

|#<Object: #275da>

|__

CLASSES

Previously, a :NEW message was used to create an object. The message

used to see what is in an object is the :SHOW message.

 __

|

|
> (send my-class :show)

|
Object is #<Object: #27756>, Class is #<Object: #23fe2>

|
 MESSAGES = NIL

|
 IVARS = NIL

|
 CVARS = NIL

|
 CVALS = NIL

|
 SUPERCLASS = #<Object: #23fd8>

|
 IVARCNT = 0

|
 IVARTOTAL = 0

|
#<Object: #27756>

|__

From the display of the MY-CLASS object you can see there are a variety

of components. The components of a class are:

Class Pointer This pointer shows to what class the

object (instance or class) belongs. For

a class, this always points to the

built-in object CLASS. This is also

true of the CLASS object, its class

pointer points to itself.

Superclass Pointer This pointer shows what the next class

up the class hierarchy is. If the user

does not specify what class is the

superclass, it will point to the

built-in class OBJECT.

Messages This component shows what messages are

allowed for the class, and the

description of the method that will be

used. If the method is system-defined,

it will show up in the form of '#<Subr-:

#18b98>'. Remember that the class

hierarchy (through the Superclass

Pointer) is searched if the requested

message is not found in the class.

Instance Variables This component lists what instance

variables will be created when an object

instance is created. If no instances of

the class exist, there are no Instance

Variables. If there are 5 instances of

a class, there are 5 complete and

different groups of the Instance

Variables.

Class Variables The CLASS VARIABLES (CVAR) component

and Values

lists what class variables exist within

the class. The Class Values (CVAL)

component shows what the current values

of the variables are. Class Variables

are used to hold state information about

a class. There will be |Bone of each|A

of the Class Variables, independent of

the number of instances of the class

created.

A BETTER EXAMPLE

The example previously shown does work, but the class and instances

created don't really do anything of interest. The following example

sets up a tool class and creates some tool instances.

 __

|

|
> (setq my-tools (send class :new '(power moveable operation)))

|
#<Object: #277a6>

|

|
> (send my-tools :answer :isnew '(pow mov op)

|

 '((setq power pow)

|

 (setq moveable mov)

|

 (setq operation op)))

|
#<Object: #277a6>

|

|
> (setq drill (send my-tools :new 'AC t 'holes))

|
#<Object: #2ddbc>

|

|
> (setq hand-saw (send my-tools :new 'none t 'cuts))

|
#<Object: #2dc40>

|

|
> (setq table-saw (send my-tools :new 'AC nil 'cuts))

|
#<Object: #2db00>

|__

So, a class of objects called MY-TOOLS was created. Note that the class

object MY-TOOLS was created by sending the :NEW message to the built-in

CLASS object. Within the MY-TOOL class, there are three instances

called DRILL, HAND-SAW and TABLE-SAW. These were created by sending the

:NEW message to the MY-TOOLS class object. Notice that the parameters

followed the message selector.

INSTANCES

The following is a display of the contents of some of the previously

created instances:

 __

|

|
> (send drill :show)

|
Object is #<Object: #2ddbc>, Class is #<Object: #277a6>

|
 POWER = AC

|
 MOVEABLE = T

|
 OPERATION = HOLES

|
#<Object: #2ddbc>

|

|
> (send hand-saw :show)

|
Object is #<Object: #2dc40>, Class is #<Object: #277a6>

|
 POWER = NONE

|
 MOVEABLE = T

|
 OPERATION = CUTS

|
#<Object: #2dc40>

|__

From the display of these instances you can see there are some

components and values. The components of an instance are:

Class Pointer This pointer shows to which class the

current object instance belongs. It is

through this link that the system finds

the methods to execute for the received

messages.

Instance Variables The Instance Variables (IVAR) component

and Values

lists what variables exist within the

instance. The Instance Values component

holds what the current values of the

variables are. Instance Variables are

used to hold state information for each

instance. There will be a group of

Instance Variables for each instance.

METHODS

There have been a few of the messages and methods in XLISP shown to this

point (:NEW and :SHOW). The following are the methods built into XLISP:

:ANSWER The :ANSWER method allows you to define or

change methods within a class.

:CLASS

The :CLASS method returns the class of an object.

:ISNEW The :ISNEW method causes an instance to run its

initialization code. When the :ISNEW method is

run on a class, it resets the class state. This

allows you to re-define instance variables,

class variables, etc.

:NEW The :NEW method allows you to create an instance

when the :NEW message is sent to a user-defined

class. The :NEW method allows you to create a

new class (when the :NEW message is sent to the

built-in CLASS).

:SHOW

The :SHOW method displays the instance or class.

SENDING MESSAGES TO A SUPERCLASS

In addition to the SEND function, there is another function called

SEND-SUPER. The SEND-SUPER function causes the specified message to be

performed by the superclass method. This is a mechanism to allow

chaining of methods in a class hierarchy. This chaining behavior can be

achieved by creating a method for a class with the :ANSWER message.

Within the body of the method, you include a SEND-SUPER form. This

function is allowed only inside the execution of a method of an object.

OBJECT AND CLASS

The definition of the built-in class OBJECT is:

 __

|

|
> (send object :show)

|
Object is #<Object: #23fd8>, Class is #<Object: #23fe2>

|
 MESSAGES = ((:SHOW . #<Subr-: #23db2>)

|

 (:CLASS . #<Subr-: #23dee>)

|

 (:ISNEW . #<Subr-: #23e2a>))

|
 IVARS = NIL

|
 CVARS = NIL

|
 CVALS = NIL

|
 SUPERCLASS = NIL

|
 IVARCNT = 0

|
 IVARTOTAL = 0

|
#<Object: #23fd8>

|__

Note that OBJECT is a class - as opposed to an "instance-style" object.

OBJECT has no superclass, it is the top or root of the class hierarchy.

OBJECT's class is CLASS.

 __

|

|
> (send class :show)

|
Object is #<Object: #23fe2>, Class is #<Object: #23fe2>

|
 MESSAGES = ((:ANSWER . #<Subr-: #23e48>)

|

 (:ISNEW . #<Subr-: #23e84>)

|

 (:NEW . #<Subr-: #23ea2>))

|
 IVARS = (MESSAGES IVARS CVARS CVALS SUPERCLASS

|

 IVARCNT IVARTOTAL)

|
 CVARS = NIL

|
 CVALS = NIL

|
 SUPERCLASS = #<Object: #23fd8>

|
 IVARCNT = 7

|
 IVARTOTAL = 7

|
#<Object: #23fe2>

|__

CLASS has a superclass of OBJECT. It's class is itself - CLASS.

A MORE REALISTIC EXAMPLE

__

The following is an example, using the idea of tools again. It contains

a hierarchy of tool classes. The top of the class hierarchy is TOOLS.

HAND-TOOLS and SHOP-TOOLS are sub-classes of TOOLS. The example creates

instances of these sub-classes. It is possible to extend this example

in various ways. One obvious extension would be to create a third tier

of classes under HAND-TOOLS that could contain classes like drills,

screwdrivers, pliers and so on.

;;

;

;
File name:
tools.lsp

;
Author:

Tim Mikkelsen

;
Description:
Object-oriented example program

;
Language:
XLISP 2.0

;

;
Date Created:
10-Jan-1988

;
Date Updated:
2-Apr-1989

;

;
(c) Copyright 1988, by Tim Mikkelsen, all rights reserved.

;
 Permission is granted for unrestricted non-commercial use.

;

;;

;;

;

;
Define the superclasses and classes

;

;;

;

; make TOOLS superclass

;
with a different :ISNEW method

;
added methods are :BORROW and :RETURN

;
class variables are
NUMBER

contains # of tool instances

;

ACTIVE-LIST
contains list of current objects

;
instance variables are
POWER

list - (AC BATTERY HAND)

;

MOVEABLE
CAN-CARRY or CAN-ROLL or FIXED

;

OPERATIONS
list

;

MATERIAL
list - (WOOD METAL PLASTIC ...)

;

PIECES

list

;

LOCATION
HOME or person's name

;

(setq tools (send class :new '(power

 moveable

 operations

 material

 pieces

 location)

 '(number active-list)))

(send tools :answer :isnew '()

 '((if (null number) (setq number 1)

 (setq number (1+ number)))

 (setq active-list (cons self active-list))

 (setq location 'home)))

(send tools :answer :borrow '(by-who)

 '((if (eq location 'home) (setq location by-who)

 (print "you can't"))))

(send tools :answer :return '()

 '((if (eq location 'home) (print "got it already")

 (setq location 'home))))

;

; make HAND-TOOLS class

;
with a different :ISNEW method

;
new instance variable
WEIGHT

<number> of pounds

;
the rest is inherited from TOOLS

;

(setq hand-tools (send class :new '(weight) '() tools))

(send hand-tools :answer :isnew '(pow op mat parts w-in)

 '((setq power pow)

 (setq moveable 'can-carry)

 (setq operations op)

 (setq material mat)

 (setq pieces parts)

 (setq weight w-in)

 (send-super :isnew)))

;

; make SHOP-TOOLS class

;
with a different :ISNEW method

;
no new instance variables

;
the rest is inherited from TOOLS

;

(setq shop-tools (send class :new '() '() tools))

(send shop-tools :answer :isnew '(pow mov op mat parts)

 '((setq power pow)

 (setq moveable mov)

 (setq operations op)

 (setq material mat)

 (setq pieces parts)

 (send-super :isnew)))

;;

;

;
Create instances of various tool classes

;

;;

(setq hand-drill (send hand-tools :new

; make an instance - HAND-DRILL

 '(ac)

 '(drill polish grind screw)

 '(wood metal plastic)

 '(drill drill-bits screw-bits buffer)

 '2.5))

(setq table-saw (send shop-tools :new

; make an instance - TABLE-SAW

 '(ac)

 'fixed

 '(rip cross-cut)

 '(wood plastic)

 '(saw blades fence)))

(setq radial-arm (send shop-tools :new

; make an instance = RADIAL-ARM

 '(ac)

 'can-roll

 '(rip cross-cut)

 '(wood plastic)

 '(saw blades dust-bag)))

The following session shows how to use the tool definitions from this

better example. The example starts at the OS shell and brings up xlisp

running the file 'tools.lsp'.

 __

|

|
cmd? xlisp tools

|
; loading "init.lsp"

|
; loading "tools.lsp"

|
> (send hand-drill :borrow 'fred)

|
FRED

|

|
> (send table-saw :return)

|
"got it already"

|
"got it already"

|

|
> (send hand-drill :borrow 'joe)

|
"you can't"

|
"you can't"

|

|
> (send hand-drill :return)

|
HOME

|__

So, Fred was able to borrow the HAND-DRILL. When an attempt was made to

return the TABLE-SAW, it was already at home. A second attempt to

borrow the HAND-DRILL indicated that "you can't" because it was already

lent out. Lastly, the HAND-DRILL was returned successfully. (Note that

the "got it already" and "you can't" strings show up twice in the

display because the methods both print and return the string.)

The following session shows the structure of the TOOLS object:

 __

|

|
> (send tools :show)

|
Object is #<Object: #276fc>, Class is #<Object: #23fe2>

|
 MESSAGES = ((:RETURN . #<Closure-:RETURN: #2dbd0>)

|

 (:BORROW . #<Closure-:BORROW: #2ddba>)

|

 (:ISNEW . #<Closure-:ISNEW: #274a4>))

|
 IVARS = (POWER MOVEABLE OPERATIONS MATERIAL PIECES LOCATION)

|
 CVARS = (NUMBER ACTIVE-LIST)

|
 CVALS = #(3 (#<Object: #2cadc>

|

 #<Object: #2cda2>

|
 #<Object: #2d0e0>))

|
 SUPERCLASS = #<Object: #23fd8>

|
 IVARCNT = 6

|
 IVARTOTAL = 6

|
#<Object: #276fc>

|__

The two TOOLS sub-classes HAND-TOOLS and SHOP-TOOLS structure looks like:

 __

|

|
> (send hand-tools :show)

|
Object is #<Object: #2dab8>, Class is #<Object: #23fe2>

|
 MESSAGES = ((:ISNEW . #<Closure-:ISNEW: #2d7a2>))

|
 IVARS = (WEIGHT)

|
 CVARS = NIL

|
 CVALS = NIL

|
 SUPERCLASS = #<Object: #276fc>

|
 IVARCNT = 1

|
 IVARTOTAL = 7

|
#<Object: #2dab8>

|

|
> (send shop-tools :show)

|
Object is #<Object: #2d680>, Class is #<Object: #23fe2>

|
 MESSAGES = ((:ISNEW . #<Closure-:ISNEW: #2d450>))

|
 IVARS = NIL

|
 CVARS = NIL

|
 CVALS = NIL

|
 SUPERCLASS = #<Object: #276fc>

|
 IVARCNT = 0

|
 IVARTOTAL = 6

|
#<Object: #2d680>

|__

The class HAND-TOOLS has an instance HAND-DRILL which looks like:

 __

|

|
> (send hand-drill :show)

|
Object is #<Object: #2d0e0>, Class is #<Object: #2dab8>

|
 WEIGHT = 2.5

|
 POWER = (AC)

|
 MOVEABLE = CAN-CARRY

|
 OPERATIONS = (DRILL POLISH GRIND SCREW)

|
 MATERIAL = (WOOD METAL PLASTIC)

|
 PIECES = (DRILL DRILL-BITS SCREW-BITS BUFFER)

|
 LOCATION = HOME

|
#<Object: #2d0e0>

|__

