
	
	 	



ISU-CL-7704	
	
	
	
	
	

	
	

A	BIT	SLICE	MICROPROCESSOR	BASED	
PAGE	REPLACEMENT	CONTROLLER	FOR	
THE	SYMBOL	2R	COMPUTER	SYSTEM	

	
	

by	
Tim	I.	Mikkelsen	

	
	

	

	

	

	

	

This	 report	 was	 submitted	 to	 the	 Graduate	 Faculty	 at	 Iowa	 State	 University	 in	
partial	fulfillment	of	requirements	for	the	degree	of	Master	of	Science.	
(Note	that	the	appendices	in	the	original	thesis	are	not	included	in	this	electronic	version.)	

	
	

September	1977	
	
	
	



Table	of	Contents	

INTRODUCTION	 4	

SYMBOL	BACKGROUND	 5	
GENERAL	 5	
SYMBOL	PAGE	REPLACEMENT	 5	

ALGORITHM	SELECTION	 7	

ALGORITHM	IMPLEMENTATION	 8	
LEAST	RECENTLY	USED	 8	
WORKING	SET	 8	

INTERFACING	WITH	SYMBOL	 10	

CONTROLLER	CONSIDERATIONS	 11	

CONTROLLER	DESIGN	 12	

CONCLUSIONS,	PROBLEMS,	AND	EXTENSIONS	 14	

ACKNOWLEDGEMENTS	 15	

REFERENCES	 16	
	
	 	



	

Introduction	
SYMBOL	2R	is	a	multiprocessor	computer	system	with	an	unusual	combination	of	
design	premises:		

1. User	oriented	high	level	language	implemented	in	hardware		
2. Provisions	for	interactive	computing		
3. Virtual	memory.		

In	the	years	following	the	system's	design	there	have	been	advances	in	several	areas	
of	computer	systems,	notably	page	replacement	algorithms	for	demand	paging	
virtual	memory	systems.	This	paper	describes	a	controller	that	implements	a	new	
page	replacement	algorithm	for	the	virtual	memory	of	the	SYMBOL	system.	The	
approach	taken	in	this	design	removes	some	of	the	memory	management	functions	
from	the	mainframe	and	puts	them	in	the	controller.			
There	are	several	reasons	for	the	design	and	construction	of	this	controller:		

1. Demonstrating	the	applicability	of	microprocessors	within	mainframe	
computers	

2. Improving	the	paging	policy	of	SYMBOL		
3. Acquiring	address	traces		
4. Acquiring	data	as	a	general	purpose	programmable	monitor	for	SYMBOL	

hardware	
Using	microprocessors	to	perform	mainframe	functions	is	important	because	it	
allows	the	mainframe	to	spend	its	time	on	user	programs,	not	system	overhead.	The	
address	traces	can	be	used	to	simulate	SY	MBOL's	memory	so	that	paging	policies	
can	be	compared.	The	address	traces	and	general	data	acquisition	can	be	useful	in	
debugging	hardware	problems	in	SYMBOL.	
This	paper	deals	with	three	diverse	areas:	SYMBOL,	page	replacement	algorithms,	
and	bit-slice	microprocessors.	Section	II	contains	a	description	of	SYMBOL	and	its	
paging	policy-	Sections	III	and	IV	propose	two	algorithms	and	possible	
implementations.	Section	V	discusses	how	to	interface	SYMBOL	and	the	new	
controller.	Sections	VI	and	VII	explain	the	criteria	for	choosing	a	microprocessor	
family	and	the	basic	architecture	of	that	family	as	it	applies	to	this	controller.	
Controller	circuit	diagrams,	controller	functions,	and	the	microcode	for	the	selected	
algorithms	appear	in	the	appendices.	
	
	 	



SYMBOL	Background	

General	
SYMBOL	is	a	non-homogeneous	multi-processor	system	designed	for	interactive	
computing.	The	system	consists	of	several	independent,	dedicated	hard-wired	
processors	communicating	over	a	common	bus-	Some	of	the	major	processors	are	
the	central	processor	(CP)	,	the	system	supervisor	(SS),	the	translator	(TR),	the	
channel	controller	(CC)	which	provides	communication	between	a	user	and	his	
program,	the	input	output	processor	(IP)	and	the	memory	controller	(MC).	
The	programmer	only	sees	a	high	level	memory,	which	consists	of	two	data	types	-	
character	string	scalars	of	arbitrary	length	and	structures	of	strings	of	arbitrary	size	
and	shape.	The	size	of	the	strings	and	structures	can	vary	dynamically	and	the	
system	takes	care	of	allocation,	physical	location	and	de-allocation.	The	de-allocated	
memory	is	collected	by	another	processor	-	the	memory	re-claimer	(MR).		The	
various	processors	rely	on	logical	storage,	a	large	supply	of	storage	strings	allocated	
by	the	MC,	to	provide	the	user	with	the	high	level	storage.		These	storage	strings	are	
allocated	in	eight	word	groups	and	when	a	processor	has	filled	up	a	group	the	MC	
appends	another	group	to	the	storage	string.		For	a	more	extensive	description	of	
SYMBOL	refer	to	(8,	9,	10,	12).	
	

SYMBOL	Page	Replacement	
The	virtual	storage	that	the	MC	deals	with	consists	of	16	million	words,	divided	in	to	
64	K	(	where	K	=	1024	)	pages	of	256	words.		Each	word	consists	of	64	bits	and	is	
equivalent	to	eight	characters.		The	physical	storage	that	is	implemented	consists	of	
32	pages	of	core	storage	and	4096	pages	of	drum	memory.		The	memory	controller	
and	the	system	supervisor	take	care	of	managing	the	physical	store.		When	a	request	
for	a	page	not	in	core	is	received	by	the	memory	controller	a	page	fault	signal	is	sent	
to	the	system	supervisor	which	executes	an	algorithm	to	determine	which	page	is	
the	most	likely	candidate	for	swapping	with	the	requested	virtual	page.		The	current	
replacement	algorithm	is	a	form	of	first-in,	first-out.	The	information	used	by	the	
algorithm	is	updated	only	on	unusual	events	-	page	faults,	user	pauses,	user	
initiations,	et	cetera.		A	description	of	the	algorithm	follows:		
1) When	a	page	is	transferred	to	core	the	core	frame	number	is	added	to	the	

bottom	of	a	core	frame	list	with	its	page	residency	index	(PRI)	,	which	indicates	
the	reason	for	the	page	being	in	core,	set	to:		
a) PRI=1	if	the	page	belongs	to	a	process	in	the	input	output	processor	or	is	a	

non-name-table	page	belonging	to	a	process	in	the	translator	
b) PRI=2	if	the	page	belongs	to	a	process	that	is	not	on	the	top	of	the	central	

processor	queue	or	if	the	page	is	a	name-table	page	belonging	to	a	process	in	
the	translator	

c) PRI=3	if	the	page	belongs	to	the	top	process	in	the	central	processor.			
2) When	a	process	is	made	inactive	for	a	period	of	time,	for	example	when	a	user	

presses	the	pause	key	at	his	terminal,	the	page	residency	index	(PRI)	is	set	to	0.	



3) When	a	page	fault	occurs	take	note	of	the	page	pushing	priority	(PPP),	the	
reason	for	bringing	the	page	in,	and	go	through	the	following:	
a) Search	through	the	core	frame	list	for	a	page	where	PPP	is	greater	than	PRI.	

During	the	search	keep	track	of	the	last	page	where	PPP	equaled	PRI.		If	no	
page	is	found	with	its	PRI	less	than	the	incoming	page's	PPP	then	go	on	to	
step	b.	

b) If	there	is	a	page	with	PPP	=	PRI	then	the	selected	page	is	the	one	to	push.	If	
there	is	no	page	that	has	met	this	criteria	then	go	on	to	step	c.	

c) Temporarily	abandon	the	paging	task	but	leave	the	process	unblocked	so	
when	it	receives	its	next	quantum	of	service	it	will	try	again.			

Note	that	in	the	above	description,	a	process	is	some	portion	of	the	execution	of	a	
user's	interactive	program	(including	text	entry,	editing,	translation,	and	actual	
execution).	
	
	 	



Algorithm	Selection	
Programs	tend	to	follow	the	principle	of	locality,	which	states:		

1. A	program	distributes	its	memory	references	non-uniformly	over	its	
pages	

2. The	frequency	that	a	page	is	accessed	over	time	tends	to	change	slowly	
3. There	is	a	high	correlation	between	the	immediate	past	and	the	

immediate	future	of	memory	references.			
It	is	because	of	locality	and	its	effects	that	page	replacement	algorithms	like	least	
recently	used	and	working	set	provide	good	performance	over	random	or	arbitrary	
paging	policies.	A	program	that	has	little	or	no	locality	will	have	no	need	of	a	
complex	algorithm.	
Agrawal,	in	his	dissertation	(1,	11),	discussed	and	simulated	several	replacement	
policies.		From	his	report	it	was	shown	that	page	replacement	policies	do	provide	an	
improvement	in	the	SYMBOL	paging	policy.		The	policies	he	simulated	were	simple	
stack	and	queue	algorithms.	Examples	are	least	recently	used	and	first-in	first-out.	
His	simulation	showed	that	least	recently	used	(LRU)	worked	best	by	a	small	
margin.	So,	to	begin	with,	the	controller	should	be	able	to	perform	the	LRU	policy	
Since	Agrawal	has	finished	his	dissertation,	as	with	SYMBOL,	new	developments	
have	occurred.	In	particular,	Agrawal	did	not	simulate	the	working	set	replacement	
policy.		It	is	difficult	to	say	how	working	set	would	perform	on	an	unusual	system	
like	SYMBOL.		Unfortunately	the	data	collection	hardware	has	been	dismantled	and	
the	simulation	software	(with	its	sample	reference	strings)	is	not	re-constructible.	
Remember	that	data	collection	is	one	of	the	intended	functions	of	the	page	
replacement	controller.		Even	though	there	is	no	empirical	reason,	working	set	is	a	
prime	candidate	for	implementation	by	virtue	of	its	acceptance	and	performance	
elsewhere.	
	
	 	



Algorithm	Implementation	

Least	Recently	Used	
When	a	page	fault	occurs	the	least	recently	used	algorithm	selects	for	replacement	
that	page	not	accessed	for	the	longest	number	of	references.		An	implementation	
might	be	a	queue	with	additions	(memory	references)	to	the	front	of	the	queue	and	
deletions	from	any	part	of	the	queue	(these	memory	references	being	added	to	the	
front).		The	least	recently	used	page	is	the	one	at	the	end	of	the	queue.			
One	of	the	limiting	factors	in	the	algorithm	is	the	updating	of	the	queue.		This	means	
that	deletions	and	additions	to	the	queue	should	be	as	fast	as	possible.	There	is	no	
time	for	searching	and	reordering	a	linear	list.		A	circular	doubly	linked	list	is	used	
because	of	its	ease	of	update.			
The	suggested	implementation	is:		

1) System	start	up	-	link	all	pages	together		
2) Page	fault	-	take	the	page	at	the	bottom	of	the	list,	put	it	at	the	top	of	the	list	

and	then	pass	its	number	to	the	system	supervisor	
3) Page	access	–		

a) Page	is	on	the	top	of	the	list	-	do	nothing		
b) Page	is	on	the	bottom	of	the	list	–	shift	the	pointers	so	that	the	top	pointer	

points	to	the	page	accessed	and	the	bottom	pointer	points	to	the	page	
that	was	above	the	previous	bottom	page	

c) Otherwise	-	remove	the	element	corresponding	to	the	page	being	
accessed	and	add	it	to	the	top	of	the	list	and	set	the	top	pointer	
accordingly	

Note	that	this	policy	will	always	produce	a	push-able	page.		The	microcode	for	the	
LRU	algorithm	is	in	Appendix	C.	

Working	Set	
As	stated	earlier,	programs	tend	to	exhibit	locality	of	memory	references.	The	
program	can	be	visualized	as	making	transitions	from	time	to	time	among	localities,	
where	each	locality	is	a	subset	of	the	program's	entire	set	of	pages.		The	working	set	
of	a	program	can	be	defined	as	the	pages	in	the	current	locality.	A	strict	definition	is:	
the	working	set	W(t,T)	at	time	t	is	the	set	of	pages	a	program	has	accessed	in	the	last	
T	memory	references.		T	is	the	window	size.	A	program	must	have	all	of	its	working	
set	in	core	or	the	program	is	not	allowed	to	continue	execution.	
The	working	set	policy	can	be	implemented	with	a	circular	list	where	the	list	size	is	
equal	to	the	window	size	(T).		Page	numbers	are	inserted	into	the	list	on	each	
memory	reference	–	over-writing	a	previous	value.		The	list	is	searched	on	page	
faults	to	determine	which	pages	are	no	longer	in	a	working	set.	Because	the	
principle	of	locality	deals	with	the	nature	of	a	single	program	or	process	it	is	
necessary	to	maintain	a	working	set	list	for	each	process.		Note	that	because	of	this	
implementation	it	is	necessary	to	go	through	all	processes'	lists	whenever	there	is	a	
page	fault	in	order	to	determine	the	most	push-able	page	).	



For	SYMBOL	there	can	be	16	users	(current	maximum	-	expandable	in	the	hardware	
to	31)	and	a	typical	implementation	of	working	set	might	have	a	local	list	size	of	64	
words	(the	64	word	window	size	is	taken	from	an	actual	implementation	(7)	).				
This	means	that	when	a	page	fault	occurs	the	controller	would	have	to	access	1024	
locations	which	in	microcode	could	take	up	to	one	millisecond	to	perform.		This	
would	be	too	long	a	time	to	have	the	system	halted.		It	is	assumed	that	a	memory	
reference	operation	will	take	1	microsecond	or	less.		An	alternative	would	be	to	
monitor	which	core	frame	is	being	overwritten	in	the	queue	and	to	keep	track	of	the	
number	of	references	to	a	page	in	all	the	lists.	So	when	a	page	number	is	overwritten	
subtract	one	from	the	references	counter	for	that	page	number.	One	is	added	to	the	
counter	for	the	incoming	page.	When	a	page	fault	occurs	the	controller	searches	
through	the	list	of	counters	for	a	counter	with	a	value	of	zero.	
A	problem	is	when	no	page	has	fallen	out	of	a	working	set	(which	will	happen	when	
the	window	size	T	exceeds	the	number	of	pages	in	core).		There	are	two	solutions	to	
this	problem.		SYMBOL	has	taken	one	approach	in	it's	first-in	first-out	algorithm:	
postpone	any	action	in	hopes	that	at	some	time	a	page	will	fall	out	of	the	working	
set.		This	is	the	approach	taken	in	the	example	microcode	(in	Appendix	C)	for	
working	set	because	it	is	simple.	
The	other	approach	is	to	define	some	policy	to	select	a	page	from	the	various	
processes	and	seize	that	page.	One	possible	criteria	would	be	the	number	of	pages	
that	a	process	currently	has	in	core.	The	controller	could	keep	track	of	this	value	by	
a	set	of	counters	for	each	process	indicating	the	number	of	pages	in	core.	When	a	
page	is	brought	in	the	list	would	be	incremented.	When	a	page	is	selected	to	be	
thrown	out	it	would	cause	the	counter	to	be	decremented.		Another	criteria	would	
be	to	select	which	page	has	the	fewest	number	of	references.		This	criteria	does	not	
allow	for	a	strict	implementation	of	working	set	because	it	allows	a	process	to	throw	
out	another	process's	page.	However	the	window	size	being	larger	than	the	number	
of	core	frames	available	means	there	can	not	be	a	strict	implementation	of	working	
set	because	a	process	could	potentially	have	T	pages	in	its	window	and	the	strict	
policy	would	require	halting	the	program.	Because	of	the	uncertain	nature	of	
SYMBOL's	performance	with	working	set	it	is	difficult,	if	not	impossible,	to	prescribe	
the	best	policy	with	regards	to	the	case	where	no	page	has	fallen	out	of	the	working	
set.	
	
	 	



Interfacing	with	SYMBOL	
The	current	page	replacement	algorithm	is	implemented	in	hardware	in	the	system	
supervisor.	The	new	algorithm	will	reside	in	an	add-on	controller.	Therefore,	there	
has	to	be	some	hardware	change	in	the	system	supervisor	to	circumvent	the	old	
algorithm	and	to	allow	the	new	controller	to	supply	the	virtual	page	to	be	pushed.	
The	system	supervisor	hardware	executes	the	algorithm	by	going	through	phases,	
represented	by	the	state	of	several	flip-flops.	To	circumvent	the	old	algorithm	a	
phase	transition	will	be	prevented	and	the	transition	signal	will	be	passed	to	the	
add-on	controller	to	indicate	that	the	controller	needs	to	select	the	push-able	page	-	
Subsequently	it	will	be	necessary	to	restart	the	system	supervisor	at	an	appropriate	
point	and	allow	it	to	perform	the	actual	swapping,	housekeeping,	and	possibly	
putting	the	process	back	on	the	paging	request	queue	if	it	was	not	satisfied-	This	
restart	will	be	accomplished	by	having	the	add-on	controller	present	a	phase	
transition	signal.	It	would	be	possible	to	have	the	add-on	controller	perform	more	of	
the	system	supervisor's	page	replacement	functions,	but	there	would	be	no	need	
because	the	rest	of	page	replacement	is	functioning	satisfactorily.	If	other	functions	
were	added	to	the	add-on	controller	it	would	complicate	the	interface	and	make	it	
very	difficult	to	remove	the	controller	and	return	the	system	supervisor	to	its	
normal	page	replacement	algorithm.	The	removal	of	the	add-on	controller	would	be	
desirable	because	the	controller	is	intended	for	other	data	acquisition	applications	
and	to	allow	SYMBOL	to	function	normally	if	the	controller	does	not	work	after	the	
hard	ware	modifications	are	made	
The	algorithms	to	be	implemented	will	require	the	following	lines	from	SYMBOL:	

1) core	frame	number	(	5	bits	)	
2) valid	virtual	address	(	1	bit	)	(	memory	reference	)	
3) terminal	number	(	4	bits	)	(	user	number	)		
4) master	reset	(	1	bit	)		
5) phase	transition	(	1	bit	)	(	page	fault	)		

The	following	lines	are	needed	into	SYMBOL:	
1) resume	system	supervisor	(	1	bit	)	(	page	found	)	
2) resume	system	supervisor	(	1	bit	)	(	no	page	found	)	
3) page	to	be	pushed	(	5	bits	).	

In	addition	to	the	previous	lines	there	are	other	lines	that	might	be	useful	to	future	
page	replacement	algorithms	and	for	data	acquisition	applications.	Some	of	these	
lines	from	SYMBOL	are:	

1. processor	number	
2. page	priority		
3. memory	operation	code		
4. memory	read/write	
5. virtual	address	

	 	



Controller	Considerations	
The	major	consideration	for	the	controller	is	speed.		From	Appendix	E	one	can	see	
that	the	worst	case	time	between	memory	references	(fastest)	is	5.01	microseconds.	
This	time	dictated	that	a	bit	slice,	bipolar	microprocessor	be	used	because	single	
chip	microprocessors	are	too	slow	(1	to	10	microsecond	cycle	times).		Bit	slice	
microprocessors	currently	have	100	to	300	nanosecond	cycle	times.	
Another	consideration	that	further	enforces	the	need	for	bit	slice	microprocessors	is	
their	inherent	ability	to	specify	several	functions	to	be	performed	simultaneously.	
This	enhances	the	controller's	speed.	This	means	that	the	micro	program	word	
needs	to	be	very	wide	in	order	to	specify	the	functions	independently.			
Because	the	controller	is	intended	to	be	used	for	several	functions	it	is	necessary	to	
provide	a	micro-program	control	memory	that	is	writeable.	An	alternative	might	be	
to	provide	several	sets	of	programmable	read	only	memories	(PROM's).		It	would	
not,	however,	be	economical	to	do	so	because	PROM's	that	are	fast	enough	(35	to	50	
nanosecond	access	time)	are	of	the	fusible-link	technology	and	can	only	be	
programmed	once.		There	is	a	sizeable	dollar	investment	in	a	few	sets	of	PROMs.	
Another	consideration	is	that	PROMs	are	not	conducive	to	developmental	work	
The	control	memory	will	be	designed	so	that	standard	8	bit	microprocessors	(like	
Intel	8080’s	or	MOS	6502’s)	can	load	the	control	program.		This	is	because	
microprocessor	transceivers	on	SYMBOL	can	perform	the	downloading	of	the	
control	store.	It	also	allows	the	controller	to	function	in	a	stand-alone	configuration	
with	an	inexpensive	microprocessor	system	like	a	MOS	6502	based	KIM-1.		The	data	
memory	will	be	designed	so	that	it	too	can	be	accessed	by	a	standard	8	bit	
microprocessor	for	similar	reasons.		
The	actual	processor	family	selected	is	the	American	Micro	Devices	Am	2900	family.	
At	the	time	that	the	project	started	the	only	available	bit	slice	families	(that	were	
well	established)	were	the	Am2900	family	and	the	Intel	3000	family.	In	examining	
both	families	it	appeared	that	the	Am2900	series	was	the	easiest	to	understand	and	
use.	
	
	 	



Controller	Design	
The	add-on	controller,	as	stated	in	the	previous	section,	is	based	on	the	AMD	2900	
family.	In	order	to	better	understand	the	page	replacement	controller	design	it	is	
necessary	to	understand	the	2900	family	and	the	uses	for	which	it	is	intended.	The	
Am	2900	Bipolar	Microprocessor	Family	Data	Book	(	2	)	states	that	the	Am2900	
Family	consists	of	a	series	of	LSI	(	large	scale	integration	)	building	blocks	designed	
for	use	in	building	emulators	for	various	machines,	micro-programmed	computers,	
and	micro-programmed	controllers.		Each	device	performs	a	basic	system	function	
and	is	driven	by	a	set	of	control	lines	from	a	microinstruction.	The	designer	decides	
on	the	format	and	meaning	of	the	microinstruction.	
Figure	1	shows	a	typical	system	architecture.		The	system	can	be	viewed	as	having	
two	halves:	micro-program	control	and	data	manipulation	circuitry.	The	R	ALU	(	
register	arithmetic	logic	unit	)	block	contains	16	general	purpose	registers,	an	eight	
function	arithmetic	logic	unit	and	data	steering	circuitry.	The	macroinstruction	
register	holds	the	emulated	machine's	instruction	and	the	mapping	PROM	presents	
the	micro-program	address	where	the	microinstructions	for	that	macroinstruction	
start-	The	sequencer	section	allows	for	automatic	sequential	execution,	conditional	
and	unconditional	branching,	calls,	returns	and	other	program	flow	constructs.	

	
The	major	difference	between	the	typical	architecture	just	shown	and	the	
architecture	being	used	for	the	page	replacement	controller	is	the	source	and	
meaning	of	the	macro	level	instruction.		The	add-on	controller	is	expected	to	



respond	to	several	asynchronous	lines.	Each	of	these	asynchronous	lines	is	latched	
and	cannot	be	cleared	until	the	microcontroller	specifies	to	do	so.	A	latch	is	set	if	any	
of	the	asynchronous	line	latches	are	set.	This	latch	signal	is	passed	to	the	sequencer	
control	circuitry	and	represents	signal	or	activity	pending.	The	controller	is	
intended	to	be	executing	a	tight	loop	until	one	of	the	lines	goes	low.	When	there	is	a	
signal	pending	the	controller	executes	a	conditional	branch	within	the	tight	loop	to	
the	address	specified	by	the	mapping	PROM.	The	mapping	PROM	does	priority	
encoding	of	the	lines.	The	block	diagram	of	the	add-on	controller	is	in	Figure	2	(and	
Appendix	A).			The	particular	functions	available	in	the	controller	are	presented	in	
Appendix	B	and	the	circuit	diagrams	(LSI/MSI	chip	block	diagrams)	are	in	Appendix	
A.	

	
	
	 	



Conclusions,	Problems,	and	Extensions	
On	paper	the	design	appears	to	work	fairly	well.	The	controller	can	execute	the	LRU	
and	working	set	algorithms	within	the	time	constraints.	The	design	shows	the	
applicability	of	using	microprocessors	to	perform	a	function,	page	replacement,	
within	mainframe	computers.	Further,	it	shows	that	even	a	time-critical	function,	
page	replacement	data	collection,	can	be	performed	by	microprocessors.	
The	main	reason	this	design	was	feasible	is	the	slow	memory	cycle	time	of	SYMBOL.	
There	are	few	commercial	systems	with	five-microsecond	memory	cycle	times	being	
produced	to	day.	However,	the	fact	that	it	is	possible	to	control	memory	paging	for	a	
slow	system	and	the	speed-up	of	logic	(and	micro-programmed	processors)	implies	
that	conventional	one	microsecond	cycle	time	systems	might	be	able	to	use	this	
approach	to	virtual	memory	paging.		Even	if	a	controller	could	not	keep	up,	in	real	
time,	with	the	memory	accesses,	buffering	could	be	provided.	Then	the	controller	
need	only	be	as	fast	as	the	average	memory	speed	(which	is	potentially	slower	than	
the	memory	cycle	time).		When	a	page	fault	occurs	in	a	buffered	controller-	assisted	
system	the	designer	has	a	choice	of	halting	the	system	and	emptying	the	buffer	or	
performing	the	algorithm	without	the	additional	information.	Note	that	the	
execution	of	the	algorithms	with	out	the	additional	information	does	not	cause	
errors	but	rather	only	degrades	the	system	performance.		
The	problem,	which	arises,	is	that	this	approach	to	page	replacement	is	very	limited.	
The	limiting	factor	is	the	memory	references	used	in	the	controller	to	update	the	
lists.	LRU	has	eight	memory	references,	an	input	operation,	and	three	register	
operations	in	the	time-critical	memory	access	segment.	This	controller	takes	two	
micro-cycles	for	each	memory	reference.	If	a	controller	were	designed	to	execute	a	
memory	reference	in	one	micro-cycle	LRU	would	still	take	at	least	twelve	micro-
cycles	to	update	the	lists	during	a	memory	reference	from	the	mainframe.	
Therefore,	the	controller	micro-cycle	time	has	to	be	at	least	twelve	times	faster	than	
the	memory	cycle	time.	This	design	works	but	it	is	inherently	slower	than	a	
hardware	or	hardware-software	implementation.	
There	are	any	number	of	possible	extensions.	One	is	extending	the	LRU	algorithm	to	
allow	a	privileged	user	to	remove	and	add	a	page	to	the	push-able	page	selection	
list.	This	allows	a	user	to	bring	in	a	page	and	then	remove	it	from	the	active	list	so	it	
cannot	be	pushed	out	for	any	reason.		A	similar	feature	is	currently	implemented	on	
SYMBOL	that	allows	adding	and	deleting	from	the	ICL	(in	core	list).		Another	
extension	is	to	decide	on	a	better	policy	for	page	selection	in	working	set	(when	all	
the	pages	belong	to	some	working	set	-	none	have	fallen	out)	and	implement	it.	
	
	 	



ACKNOWLEDGEMENTS	
I	wish	to	thank	Professor	R.	J.	Zingg	and	Professor	D.	Kafura	for	their	help	in	the	
preparation	of	this	paper.	I	also	wish	to	thank	all	of	the	members	of	the	SYMBOL	
staff	for	their	comments	and	assistance	
	
	 	



REFERENCES	
1) Agrawal,	O.	P.	"Applicability	of	Buffered	Main	Memory	to	SYMBOL	25-	like	

Computing	Structures."	Dissertation.		Department	of	Electrical	Engineering.	Iowa	
State	University,	1974.	

2) Am2300	Bipolar	Microprocessor	Family	Data	Book.		Sunnyvale,	CA.		Advanced	
Micro	Devices,	Inc.,	1976.	

3) Chu	,	W.	and	Opderbeck,	H.	"Performance	of	Replacement	Algorithms	with	
Different	Page	Sizes."		Computer	Volume	7	Number	11	(November	1974)	:	14	-	
20	

4) Denning,	P	-	"Virtual	Memory"	Computing	Surveys	Volume	2	Number	3	
(September	1970):	153	-	187.	

5) Denning,	P.	and	Schwartz,	S.	"Properties	of	the	Working	Set	Model."	
Communications	of	the	Association	for	Computing	Machinery	Volume	15	
Number	3	(March	1972)	:	191	-	198.	

6) Mick,	J-	and	Brick,	J.		Microprogramming	Handbook.		Sunnyvale,	CA.		Advanced	
Micro	Devices,	Inc.,	1976.		

7) Morris,	J.	"Demand	Paging	Through	Utilization	of	Working	set	on	MANIC	II.	"	
Communications	of	the	Association	for	Computing	Machinery.	Volume	15	
Number	10	(October	1972):	867	-	872.	

8) Richards,	H.	Jr.	and	Zingg.,	R.	J.		"The	Logical	Structure	of	the	Memory	Resource	
in	the	SYMBOL	2R	Computer."	Special	Report.	NSF-OCA-GJ33097-CL7307	-	
Cyclone	Computer	Laboratory.		Iowa	State	University,	November,	1973.	

9) Richards,	H.	Jr.	and	Oldehoeft,	A.		"Hardware-Software	Interactions	in	SYMBOL	
2R's	Operating	System."	Special	Report	-	NSF-OCA-GJ	3	3097-CL	7401	-	Cyclone	
Computer	Laboratory.	Iowa	State	University,	November,	1974	

10) Zingg,	R.J.		and	Richards,	H.	Jr.	-	"SYMBOL:	A	System	Tailored	to	the	Structure	of	
Data."	Special	ReportISU-CCL-7302.	Cyclone	Computer	Laboratory.		Iowa	State	
University,	June,	1973.	

11) Agrawal,	O.	,	Zingg,	R.J.	and	Pohm,	A.V.		“Applicability	of	‘Cache'	Memories	to	
Dedicated	Multiprocessor	Systems."		Digest	of	Papers	CompCon	Spring	77.		IEEE	
Computer	Society	:	74	-	76	

12) Richards,	H.	Jr.	and	Wright,	C.	Jr.	"Introduction	to	the	SYMBOL	2R	Programming	
Language."	Special	Technical	Report.		NSF-OCA-G.J.33097-CL7306.	Cyclone	
Computer	Laboratory.		Iowa	State	University,	October	1973.	

	
	
	
	
	
	
	


